Multiple replication origins with diverse control mechanisms in Haloarcula hispanica

نویسندگان

  • Zhenfang Wu
  • Jingfang Liu
  • Haibo Yang
  • Hailong Liu
  • Hua Xiang
چکیده

The use of multiple replication origins in archaea is not well understood. In particular, little is known about their specific control mechanisms. Here, we investigated the active replication origins in the three replicons of a halophilic archaeon, Haloarcula hispanica, by extensive gene deletion, DNA mutation and genome-wide marker frequency analyses. We revealed that individual origins are specifically dependent on their co-located cdc6 genes, and a single active origin/cdc6 pairing is essential and sufficient for each replicon. Notably, we demonstrated that the activities of oriC1 and oriC2, the two origins on the main chromosome, are differently controlled. A G-rich inverted repeat located in the internal region between the two inverted origin recognition boxes (ORBs) plays as an enhancer for oriC1, whereas the replication initiation at oriC2 is negatively regulated by an ORB-rich region located downstream of oriC2-cdc6E, likely via Cdc6E-titrating. The oriC2 placed on a plasmid is incompatible with the wild-type (but not the ΔoriC2) host strain, further indicating that strict control of the oriC2 activity is important for the cell. This is the first report revealing diverse control mechanisms of origins in haloarchaea, which has provided novel insights into the use and coordination of multiple replication origins in the domain of Archaea.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Association between the Dynamics of Multiple Replication Origins and the Evolution of Multireplicon Genome Architecture in Haloarchaea

Haloarchaeal genomes are generally composed of multiple replicons, and each replicon has a single or multiple replication origin(s). The comparative genomic analysis of replication origins from closely related species can be used to reveal the evolutionary mechanisms that account for the development of multiple origin systems. Multiple replication origins have been in silico and experimentally ...

متن کامل

New, closely related haloarchaeal viral elements with different nucleic Acid types.

During the search for haloarchaeal viruses, we isolated and characterized a new pleomorphic lipid-containing virus, Haloarcula hispanica pleomorphic virus 1 (HHPV-1), that infects the halophilic archaeon Haloarcula hispanica. The virus contains a circular double-stranded DNA genome of 8,082 bp in size. The organization of the genome shows remarkable synteny and amino acid sequence similarity to...

متن کامل

Complete Genome Sequence of the Extremely Halophilic Archaeon Haloarcula hispanica Strain N601

Haloarcula hispanica has been widely used in haloarchaeal studies, particularly in the isolation of haloviruses. The genome of strain N601, a laboratory derivative of the type strain ATCC 33960, was sequenced. Several potentially significant differences from the published sequence of the type strain (CGMCC 1.2049 = ATCC 33960) were observed.

متن کامل

An improved transposon for the halophilic archaeon Haloarcula hispanica.

An improved transposon (ThD73) for Haloarcula hispanica is described. Based on the halobacterial insertion sequence ISH28, it showed little target sequence specificity but was biased toward a lower G+C content. Twenty randomly selected ThD73 mutants were analyzed, and the DNA flanking their insertions revealed several recognizable sequences, including two (unrelated) ISH elements.

متن کامل

Identification of the polyhydroxyalkanoate (PHA)-specific acetoacetyl coenzyme A reductase among multiple FabG paralogs in Haloarcula hispanica and reconstruction of the PHA biosynthetic pathway in Haloferax volcanii.

Genome-wide analysis has revealed abundant FabG (beta-ketoacyl-ACP reductase) paralogs, with uncharacterized biological functions, in several halophilic archaea. In this study, we identified for the first time that the fabG1 gene, but not the other five fabG paralogs, encodes the polyhydroxyalkanoate (PHA)-specific acetoacetyl coenzyme A (acetoacetyl-CoA) reductase in Haloarcula hispanica. Alth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 42  شماره 

صفحات  -

تاریخ انتشار 2014